DESIGN OF AIR CYCLONES: Part II – SOFTWARE DEVELOPMENT

Kuye A.O^{*1}, D.B Ayo⁶, K.O Okpala², T.O. Folami³, F.O Chukwuma¹, A.S Ahmed⁴, S.N Mumah⁵, I. I. Ismail⁶, M. O. Ayoola⁶, C. Hamilton⁶, A. I. Okereke⁶, I. O. Ejuya⁶, U. M. Mansur⁶

¹ Department of Chemical Engineering, University of Port Harcourt, P.M.B. 5323, Port Harcourt.

² Department of Chemical Engineering, Federal University of Technology, PMB 1526, Owerri.

³ TOF Engineers and Consulting Limited, 56 Femi Ayantuga Cresent, Surulere, Lagos

⁴ Department of Chemical Engineering, Ahmadu Bello University, Zaria

⁵ Department of Chemical Engineering, Kaduna Polytechnic, Kaduna

⁶ Raw Materials Research and Development Council, Abuja

Abstract

Standard design procedures for air cyclones have been employed to formulate a comprehensive design sequence for computer implementation. The procedure is implemented as a software suite, which essentially incorporates a Microsoft Access Database to store data and Microsoft Visual Basic 6.0 front-end modules for user interaction. The software design and implementation involves the following steps: establishing the model equations, designing the database to store data, designing the front-end modules and formulating the computational algorithm. The structure of the software developed is modular with scope to easily integrate modules for other unit operations.

Symbols used

- D_c Cyclone diameter, m
- a Inlet height, m
- b Inlet width, m
- D_u Gas overflow outlet diameter, m
- S Gas underflow outlet diameter, m
- h Cylindrical height of cyclone, m
- Z_c Conical height of cyclone, m
- H Total height of cyclone (h+Zc), m
- η Collection efficiency, %
- η_o Overall collection efficiency
- v_i Inlet velocity, m/s
- Q Feed rate, m^3/s
- S_f Separation Factor
- d_{pc} Critical particle diameter, microns

^{*} Corresponding Author. Email: ayokuye@yahoo.com

Introduction

In general, cyclones are robust devices used for sizing, classification and screening of particulate materials in mixture with fluids (gases or liquids). In particular, an air cyclone is a commonly used piece of equipment that utilizes centrifugal and gravitational forces to separate particles in gaseous streams [2]. Because they are simple and have low operating costs, they are probably the most widely used dust collectors in the industry. Air cyclones have no moving parts and come in various sizes and shapes. They operate on the simple principle that particles enter the device with the flowing fluid and swirl round the cylindrical part of the device. The particles have too much momentum and cannot turn with the fluid. Therefore, the particles impact and fall (by gravitational action) down the cyclone walls, and are collected.

In recent times, computer-aided design (CAD) has made the designing of processes and equipment much easier. Powerful and comprehensive process simulators are available worldwide to accurately model any process from a single unit to a complete process plant. In less- developed countries like Nigeria, these simulation software are usually very expensive and unaffordable by entrepreneurs who may desire to use them. It has therefore become necessary and timely to develop locally such software by harnessing indigenous technical expertise from both the academia and the industry. This initiative has led to the development of software for the design, optimisation and performance evaluation of air cyclones [1].

Accurate design of air cyclones is a pre-requisite for optimal necessary performance of the equipment in any chemical engineering process. For this to be possible all parameters that affect the performance of the cyclone must be considered. Many models for the design, simulation and optimisation of air cyclone exist. Such models have been reviewed in the first part of this paper [3]. The main objective of this second part is to present a detailed description of the developed software that can be used for the design, simulation and performance evaluation of air cyclones.

Software Development

Design Parameters Specification

The model equations and cyclone configurations used in this work have been described elsewhere [1]. The calculations required in the design of an air cyclone depend on the input variables that are specified. The following parameters can be specified or calculated:

- a. Volumetric flow rate of feed.
- b. Cyclone diameter.
- c. Cut diameter.
- d. Cyclone efficiency.
- e. Pressure drop

Of the five variables listed above, it is required to specify only two or three parameters as inputs for a design problem (and the others are calculated). Thus, given the cyclone geometry and operating conditions (temperature, pressure and densities of fluid and particulates), there are nine possible combinations of these design parameters for which a design solution can be calculated. Table I is a matrix of the combination of the variables and Table II explains each combination.

	b	с	D	е	ae [*]
Α	1	2	3	4	-
В	-	5	6	-	7
С	-	-	-	8	-
D	-	-	-	-	9

Table I. A matrix of cyclone input variables.

*ae means that volumetric flow rate and pressure drop are specified

Case	Design Parameters	Values to calculate from parameters
1	Q, D _c	Compute V _i from Q/(ab)
2	Q, d _{pc}	Compute D _c from d _{pc} , Compute V _i from Q/(ab)
3	Q , η	Compute d_{pc} from η , Dc from dpc, V ₁ from Q/(ab)
4	Q, ΔΡ	Compute Vi from ΔP , Dc from Q and V _i
5	D _c , d _{pc}	Compute Q from dpc and Dc, V _i from Q/(ab)
6	D _c , η	Compute d_{pc} from η , Q from dpc and D _c , V _i from Q/(ab)
7	D _c , Q, ΔΡ	Compute V _i from Q & D _c , Use ΔP as design validation
8	d _{pc} , ΔP	Compute V _i from ΔP , D _c from d _{pc} and V _i (Q)
9	η, Q, ΔΡ	Compute d_{pc} from η , D_c from d_{pc} , V_i from Q/(ab)

Table II. Combinations of Design Parameters.

The various combinations shown in Table II were implemented in the developed software.

Computational Algorithm

The computational algorithm around which the software is programmed is given below:

- 1. Select the Geometric Configuration for the Gas Cyclone Design required
- 2. Select Efficiency Model
- 3. Get the Cyclone Dimensional Ratios.
- 4. Specify Operating Temperature; Compute Fluid Density and Fluid Viscosity
- 5. Specify Operating Pressure.
- 6. Specify Inlet Feed Rate Q.

- 7. Select Particles Category and extract Particle Density
- 8. Specify Particle Distribution.
- 9. Specify Set Cut Size
- 10. Specify Number of Cyclones in parallel Or Number of Cyclones in series
- 11. Specify one of the design parameter combinations listed in Table II
- 12. Compute the following in the order given
 - a. Cyclone Natural Lengths
 - b. Diameter of Central Core at Vortex
 - c. Cyclone Volume At Natural Length
 - d. Cyclone Volume Below Exit Duct
 - e. Vortex Exponent

- f. Relaxation Time
- g. Cyclone Volume Constant
- h. Cyclone Configuration Factor
- i. Cyclone Grade Efficiency
- j. No of Inlet Velocity Heads
- k. Cyclone Surface Area
- I. Compute Inlet Velocity

For each cyclone in series, compute the following:

- Pressure Drop
- Friction Loss
- Saltation Velocity
- Velocity Ratio
- Critical Particle Diameter
- Critical Particle Diameter At 50 % Efficiency
- Ratio of set Cut Size and Critical
 Particle Size
- Ratio of set Cut Size and Critical Particle Size as 50 % Efficiency
- Separation Factor
- Collection Efficiency
- Compute Overall Collection
 Efficiency
- Compute Outlet Velocity
- Set Inlet Velocity to the Outlet Velocity

Repeat for the next cyclone

- 13. If Overall Collection Efficiency not satisfactory, iterate from step 10.
- 14. Check design through constraints.
- 15. If 13 not satisfied, iterate from step 11.

Software Implementation

The software was developed using Visual Basic 6.0. The program automatically generates the cyclone dimensions once enough design parameters have been entered. The user is not forced through a formal data input sequence since it coordinates input information in the background and computes required data when information is complete. The full description of the software is given elsewhere [1].

The various components of the main dialog box for the developed software are shown in Figures 1-6. As can be seen from the figures, the interface has several tabs through which inputs can be specified: General, Design Parameters, Geometry and Model, Operating Conditions and Dust Specifications.

The first interface the user sees on entering is the one with the Operating Conditions tab (Figure 1) on which you specify the operating temperature, operating pressure and the fluid type (usually air).

Geometry and Model	Cyclone Schematic	Cyclone Dimensions, m
General Design Parameters		
Operating Conditions Dust Specifications		b
		De
		\$
Operating Temperature, deg C 77		h
Operating Pressure, N/m ⁻² 101325		H
		Ze
		8
Select Gas 🔺 💻		Se
		Do
Vice Concision		HpD
		NatL
Des Specifications		dp crit
		de/50
PI		and the second se
Compute Design		Tree-seatily and the second
Compute Design		Set Cust Size/d
ensum Drop Overell Amount of Dust N/m*2 Editection Editected,		Tree-seatily and the second
ense Diop N/m ⁺ 2 0 Collection Collected Efficiency, 1 g/m ⁺ 3 0 0 0		Set Cust Size/d
smare Diop Overal Amount of Dust Collection Collected, Efficiency, 3 g/m ⁻³	Print Schemetic	Set Cust Size/d Set Cut Size/d Dotinum No

Fig.1: Main dialog box – Operating Conditions tab.

The Dust Specifications tab (fig. 2) is where the dust type in the gas/air stream is specified. These include the dust loading in the feed, maximum and minimum particle size and the particle size distribution. To input the particle size distribution in inlet feed, two approaches were included in the software. In the first approach, the distribution was assumed to be lognormal, and the user is expected to specify the mass median diameter and geometric standard deviation of the particles. In the second approach, the actual distribution data is available and is supplied as input.

The Geometry and Model tab is reillustrated in fig. 3. A number of standard cyclone configurations and the efficiency models are included in the software; the user is expected to specify the particular configuration and the model that should be used.

The design parameters are specified via the Design Parameters tab (fig. 4). This is where the desired combination of the design parameters (see Table I) is specified. On completion, the cyclone dimensions and size will be computed and its schematic diagram will be shown on the interface. The General tab (fig. 5) simply shows fluid density, fluid viscosity, and parameters specific to the cyclone configuration. The efficiency, the pressure drop of the cyclone and other process outputs such as critical particle sizes and velocity, are calculated and displayed when Compute Design button is clicked (fig. 6). Clicking Check Design button displays an interface (fig. 7), which shows the design

constraints, and on clicking the appropriate button (Click to Perform check on solution)

the program shows if the solution meets the various design criteria.

Georetry and Model	Cyclone Schematic	Dimension	т. 6. 16.
General Design Parameters			
Operating Conditions Dust Specifications		b	-
Select Particle Oter +		De	_
		\$	
Particle Density, kg/m ² 3 1600		h	
Dust Leading, p/m ⁻³ 0			
Max Particle Size, microne 0		20	
Min Paticle Size, microni		8	_
Marz Medan Dia, record		50	
		Do	
Geonetic Std Dev, microns 0		HpD	
Manual Sold Science and Scienc		Not1.	
T MVD, GSD Specified IF Measured		de crit	_
Country, State State Distribution Messaed		du50	
[Hemsed]		100 C	
Compute Design		Set Cust S	108/0
		1.0	
stare Drop Overal Assount of Dust N/m*2 Collection Collected		Set Cut Sa	ze/dt
Efficiency, % g/m ⁻³		11 Sectors	2015
₽ 0 0 0		Opinum Cyclones in	
paration Factor Velocity Ratio Outlet Velocity ru/s	Print Schematic		
0 (L) (L) (L) (L)	Print Schematic	1.1	

Fig. 2: Main dialog box – Dust Specifications tab.

General Design Parameters	Cyclone Schematic	Cyclone Dimensions, m
Operating Conditions Dust Specifications	Dc	4
Geometry and Nodel	b De	b na
Select Geometry	(11)	De
Shephard and Lapple ME +		S. U.E.
	위 <u>이</u> s	h
Legale Conservation (Laterally Minister C)	80400	H
a h De 5 h H		The second secon
us 10.5 os 0.55 p. o		20
Zc 8 Sc DcDo Hpd		Sc n.u
2 1.25 1.25 0 0	and the second	HeD
	1-1-1 P	NatL
Select Model		PARL
Lappin -		dp cnt
	\ / Ze	dp50
a destruction of the second		Set Cust Size/d
Compute Design		
stare Dite Overall Amount of Dust	H	Set Cut Size/dp
N/m*2 Colection Colected		
	- 76	Optimum No.
paration Factor Velocity Ratio Dutlet Velocity m/s		Cyclones in Para
	Print Schematic	

Fig. 3: Main dialog box – Operating Conditions tab.

Dipetating Condition	Dust Specifications	Cyclone Schematic	Cyclone Dimensions, m
Geometry and Model			
General	Design Pasameters	b De	ð <u>0.2</u>
peoply the Design Parame			De U
Feed Rate And Cyclone	Dianeter 👱		5 0.63
eed Hate, m ^{-3/s}	2.5	* <u> </u>	Ri I
et Cut Size, microno	0	1444	2
det Velocity av/s	26		Ze
scione Diameter, m	1		
Manufacture and the second	Of Size un 0		Se diti
tessure Drop. N/m"2	0		HpD
lo al Evolones in parallel		Transformer 1	NetC
eed Rate per cyclone. m			NotL
lo al Evolones in Series			do crit
to ar Lyciones in Senes	1 H H	1 20	dp50
10.10			Set Cust Size/d
Comp	ute Design	$\Lambda I I$	
	Amount of Diati	H	Set Cut Size/dp
N/m [*] Z Colect Efficient		11	1
01		18	Optimum No
paration Factor Velocity F	Ratio Dublet Velocity sv/s		Cyclones in Pasa
0	0 0	Print Schematic	1

Fig. 4: Main dialog box – Design Parameters tab.

Operating Conditions	Dust Specifications	Cyclone Schematic	Cyclone Dimensions, m
Geometry and Model			. 0
General	Design Parameters	b De	B 0.3
			Be
Fluid Viscosity, Ns/m*2	2.0633668-05		S 11.6
Fluid Density, kg/m ⁻³	1.0040230-+00	*C \$	Ĥ
Configuration No.	402.9		Ze
Inlet Velocity Head	8	h	8 0.3
SufaceParameter	3.78		Sc 0.1
control address:	3.70		Do
Infet Varie in Design	7	Frankland 1 M	HpD
			100000
			NaL
			Nati, dp.cill
			and the second second
		24	dp crit dp50
	e Design	26	dp cill
Ecorput	e Design		dp crit dp50
Comput	e Design Arrount of Dust		dp cill dp50 Set Cust Size/d Set Cust Size/dp
Econput wsue Drop N/m ^{*2} 0	e Design Amount of Dust n. Excelent 2 g/m ² 0 U		dp crit dp50 Set Cust Size/d Set Cust Size/dp Optimer No
Econput wroas-Drop N/s*2 Discovery Discovery	e Design Amount of Dust n. Excelent 2 g/m ² 0 U	Print Schematic	dp cill dp50 Set Cust Size/d Set Cust Size/dp

Fig. 5: Main dialog box – General tab.

Operating Conditions Dust Specifications	Cyclone Schematic	Cyclone Dimensions, an
Geometry and Model	De	a ().
General Design Parameters	- De	b 0.2
Specify the Design Paraveters you have.		De ()
Feed Rate And Epclone Diameter		5 0.12
Feed Rate, m 3/1 2.5) 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	h
Set Cut Size, nicrone 0	1424	#. 20
relet Velocity, m/s 29		20.
Cuclore Diaveter m 1		B 0.2 50 0.17
Efficience % 0 Of Sizelum 0		Do D.Ch
Pressure Doop, N/m ² 2 0	and the second s	HoD
No of Cackines in parallel	[] !!	NatL
Feed Rate per cyclone, m°3/s		
No of Cactories in Series	χ \downarrow \downarrow \downarrow	dp crit II.70
	\	dp50 8.2
	11	Set Cust Size/dp
Compute Design	\// II	
N/m ⁻¹² Delection Collected Grederg	H · ·	Set Cut See Alpo
Efficiency, % g/m ² 3 on Ear	11	a la series de la se
1070.281 63.345 0	7	Optimum No Cyclones in Parali
eparation Factor Velocity Ratio Outlet Velocity n/v	and a state of the	Guneralinata
01.500 1.159/ 12.731157	Print Schematic	

Fig. 6: Main dialog box – Design Parameters tab after calculation performed.

🗢 Design Constraints and Chec	le.		
Design Check Criteria	Limits	Design	Check
Pressure Drop , N/m^s	2490	0	₹
Design Efficiency		0	
a <= 5			~
b < 0.5(Dc-De)			
H > S + L; L= Natural Length	L=	2.3001122	~
S < h Inlet Velocity (m/s) between □	10	30	S
Optimum Velocity Ratio <	1.35		v
Optimum Velocity Ratio @	1.25		~
Ratio Set Cut Size vs Dp			
Ratio Set Cut Size vs D50 > 1			—
Click to Perform (heck of t	he solution)
Alternative Parallel Arrangement	Altern	ative Series /	Arrangement
Cyclone Diameter	Cyclor	ne Diameter	0
No Cyclones 👘			
	-		<u>E</u> xit

Fig. 7: Check Design Computations.

Validation of Software Results

To validate the software, 17 problems were used. The details of the outputs generated for these problems were given in Kuye et. al. [1]. In this paper results from two of the problems are shown in Tables III and IV; Problem 1 is from Cooper and Alley [4], while problem 2 is from Sinnot [5].

	Problem 1	Problem 2
Dimension	Ratio to Dc	Ratio to Dc
A	0.50	0.50
В	0.25	0.19
De	0.50	0.50
S	0.63	0.50
Н	2.0	1.5
Zc	2.0	2.5
Н	4.0	4.0
В	0.25	0.38

Table III: Cyclone Configurations for sample problems

Table IV - Verification of Cyclone Efficiency using Lapple Model

	Problem 1		Problem 2	
Variable	Literature	CAPED Software	Literature	CAPED Software
Gas	Air	Air	Nitrogen	Nitrogen
Configuration	Shephard & Lapple	Shephard & Lapple		From Example
Efficiency Model	Lapple	Lapple		Lapple
Pressure Drop Model	Not Specified	Stairmand	Stairmand	Stairmand
No Cyclones in parallel	1	1	4	4
Q*	2.5 m³/s	2.5 m³/s	1.11 m³/s	1.11 m³/s
D _c *	1 m	1 m	0.42 m	0.42 m
Т	77 °C	77 °C	150 °C	150 °C
Р	$1.01325 \times 10^5 \text{ N/m}^2$	1.01325x10 ⁵ N/m ²	1.01325x10 ⁵ N/m ²	1.01325x10 ⁵ N/m ²
Vi	20 m/s	20 m/s	16.5 m/s	16.589 m/s
d _p critical		8.78 μm		4.779 μm
d _{pc} (cut size)	6.3 (μm)	6.21 μm		3.393 µm
ΔΡ		1070.281 N/m ²		541.267 N/m ²
ρ _p	1600 kg/m ³	1600 kg/m ³	2500 kg/m ³	2500 kg/m ³
ρ _f	1.01 kg/m ³	1.004 kg/m ³	0.81 kg/m ³	0.81 kg/m ³
μ _p	2.0833x10 ⁻⁵ N.s/m ²	2.06936x10 ⁻⁵ N.s/m ²	2.3 x 10 ⁻⁵ N.s/m ²	2.3x10 ⁻⁵ N.s/m ²
V _o		12.73 m/s		0.953
η _{overall}	67.60 %	68.45 %	88.70 %	88.42 %

The results agreed well on the following performance outputs; pressure drop, cut size and overall collections efficiency. The variances with the results for problem 1, for example, can be explained to be due to implementation of variation of density and viscosity of air with temperature in the software, while the literature data assumed constant values.

Conclusion

The software is modular in design, interactive and user-friendly and can be extended to handle dust-laden gases. Design information, cyclone configurations and profiles are captured in the database with facility for updating as new information is gathered. Various tests-runs provide confidence that the outputs of the software can be used as specification data for fabrication of an intended cyclone.

Acknowledgement

The authors are grateful to the Raw Material Research and Development Council (RMRDC), Abuja, Nigeria for financing the Design Project that produced the results used in developing this paper.

References

- Kuye, A. O., K. O. Okpala, T. O. Folami, F. O. Chukwuma, A. S. Ahmed, S. N. Mumah, I. I. Ismail, M. O. Ayoola, C. Hamilton, A. I. Okereke and I. O Ejuya (2004), Final Technical Report on the Design of Gas Cyclones submitted to Raw Materials Research and Development Council, Abuja
- Ogawa, A. (1997), Mechanical Separation Process and Flow Patterns of Cyclone Dust Collectors. Applied Mechanics Reviews, 50(3) 97-130
- Kuye, A. O, Ayo, D. B., Okpala, K.
 O., Folami, T. O., Chukwuma, F. O,

Ahmed, A. S., Mumah, S. N., Ismail, I. I., Ayoola, M. O., Hamilton, C., Okereke, A. I., Ejuya, I.O, and Mansur, U. M., (2006), "Design of air cyclones: Part I - A review of applicable models", Journal of Raw Materials Research, 3(2) 104-117.

- 4. Cooper, C. D. and F. C. Alley, (1986) "Cyclones", Adapted from air Pollution Control, <u>http://engineering.dartmouth.edu/</u> <u>~cushman/courses/engs37/cyclone</u> <u>.htm</u>
- Sinnot, R. K. (1999) Coulsons and Richardson's Chemical Engineering. Vol.6, Butterworth Hienemann